Na+/K+-pump ligands modulate gating of palytoxin-induced ion channels.

نویسندگان

  • Pablo Artigas
  • David C Gadsby
چکیده

The Na+/K+ pump is a ubiquitous P-type ATPase that binds three cytoplasmic Na+ ions deep within its core where they are temporarily occluded before being released to the extracellular surface. The 3Na+/2K+ -exchange transport cycle is completed when two extracellular K+ ions bind and become temporarily occluded within the protein and subsequently released to the cytoplasm. Coupling of Na+ -ion occlusion to phosphorylation of the pump by ATP and of K+ -ion occlusion to its dephosphorylation ensure the vectorial nature of net transport. The occluded-ion conformations, with binding sites inaccessible from either side, represent intermediate states in these alternating-access descriptions of transport. They afford protection against potentially catastrophic effects of inadvertently allowing simultaneous access from both membrane sides. The marine toxin, palytoxin, converts Na+/K+ pumps into nonselective cation channels, possibly by disrupting the normal strict coupling between opening of one access pathway in the Na+/K+ ATPase and closing of the other. We show here that gating of the channels in palytoxin-bound Na+/K+ pumps in excised membrane patches is modulated by the pump's physiological ligands: cytoplasmic application of ATP promotes opening of the channels, and extracellular replacement of Na+ ions by K+ ions promotes closing of the channels. This suggests that, despite the presence of bound palytoxin, certain partial reactions of the normal Na+/K+ -transport cycle persist and remain capable of effecting the conformational changes that control access to the pump's cation-binding sites. These findings affirm the alternating-access model of ion pumps and offer the possibility of examining ion occlusion/deocclusion reactions in single pump molecules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large Diameter of Palytoxin-induced Na/K Pump Channels and Modulation of Palytoxin Interaction by Na/K Pump Ligands

Palytoxin binds to Na/K pumps to generate nonselective cation channels whose pore likely comprises at least part of the pump's ion translocation pathway. We systematically analyzed palytoxin's interactions with native human Na/K pumps in outside-out patches from HEK293 cells over a broad range of ionic and nucleotide conditions, and with or without cardiotonic steroids. With 5 mM internal (pipe...

متن کامل

From a pump to a pore: how palytoxin opens the gates.

T he ion channel field has benefited enormously from a plethora of natural toxins that target specific ion channels (1–13), and those toxins continue to be key molecular tools in the postgenomics era. The ion transporter field has not been so lucky, in general. Its arsenal of specific toxins is much more limited, perhaps because it’s not so easy to bring one’s prey, or biological enemy, quickly...

متن کامل

Review. Peering into an ATPase ion pump with single-channel recordings.

In principle, an ion channel needs no more than a single gate, but a pump requires at least two gates that open and close alternately to allow ion access from only one side of the membrane at a time. In the Na+,K+-ATPase pump, this alternating gating effects outward transport of three Na+ ions and inward transport of two K+ ions, for each ATP hydrolysed, up to a hundred times per second, genera...

متن کامل

Peering into an ATPase ion pump with single-channel recordings

In principle, an ion channel needs no more than a single gate, but a pump requires at least two gates that open and close alternately to allow ion access from only one side of the membrane at a time. In the Na,K-ATPase pump, this alternating gating effects outward transport of three Na ions and inward transport of two K ions, for each ATP hydrolysed, up to a hundred times per second, generating...

متن کامل

Sodium Flux Ratio in Na/K Pump-Channels Opened by Palytoxin

Palytoxin binds to Na(+)/K(+) pumps in the plasma membrane of animal cells and opens an electrodiffusive cation pathway through the pumps. We investigated properties of the palytoxin-opened channels by recording macroscopic and microscopic currents in cell bodies of neurons from the giant fiber lobe, and by simultaneously measuring net current and (22)Na(+) efflux in voltage-clamped, internally...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 100 2  شماره 

صفحات  -

تاریخ انتشار 2003